If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-9=40
We move all terms to the left:
8x^2-9-(40)=0
We add all the numbers together, and all the variables
8x^2-49=0
a = 8; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·8·(-49)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*8}=\frac{0-28\sqrt{2}}{16} =-\frac{28\sqrt{2}}{16} =-\frac{7\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*8}=\frac{0+28\sqrt{2}}{16} =\frac{28\sqrt{2}}{16} =\frac{7\sqrt{2}}{4} $
| 136+6t-6=180 | | 1/3(9-12x)=x+1 | | -2x+4(-2x+9)=156 | | 3z+6(z-5)=-48 | | -4(x–3)=-36 | | -19.47-4.23-16.5d=-14.6d+11.64 | | 13h=186 | | -4(5–3x)=12x+20 | | 10-x=6x+4 | | -0.5x-3x+2=-2.5x-8 | | a/15+14=16 | | {1}{2}x-5={1}{6}x+10 | | ⅓(6x+9)=-½(-2x-4) | | -2b+4=26 | | 43=u/2+14 | | 3x+2=8(x-1)-3 | | 5x+18+7x-14=90 | | -3u=-8 | | 6t-6=180 | | 2-2b+3+b-2=b-2b-3+2+b | | x–5=–9. | | -20+2x=2x-22 | | 2x+10x=+8 | | 250+k=398 | | a15+14=16 | | x/6+10=12 | | 12t+24=180 | | -138+7x-x=72 | | 22+.5M=2(26+.10m) | | 6+5n+2=3n+8+2n | | |6n-7|-5=3n | | 5.7=m-4.9 |